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Density estimation in sequence space is a fundamental problem
in machine learning that is also of great importance in computa-
tional biology. Due to the discrete nature and large dimensionality
of sequence space, how best to estimate such probability distri-
butions from a sample of observed sequences remains unclear.
One common strategy for addressing this problem is to estimate
the probability distribution using maximum entropy (i.e., calcu-
lating point estimates for some set of correlations based on the
observed sequences and predicting the probability distribution
that is as uniform as possible while still matching these point
estimates). Building on recent advances in Bayesian field-theoretic
density estimation, we present a generalization of this maximum
entropy approach that provides greater expressivity in regions of
sequence space where data are plentiful while still maintaining a
conservative maximum entropy character in regions of sequence
space where data are sparse or absent. In particular, we define a
family of priors for probability distributions over sequence space
with a single hyperparameter that controls the expected mag-
nitude of higher-order correlations. This family of priors then
results in a corresponding one-dimensional family of maximum a
posteriori estimates that interpolate smoothly between the max-
imum entropy estimate and the observed sample frequencies.
To demonstrate the power of this method, we use it to explore
the high-dimensional geometry of the distribution of 5′ splice
sites found in the human genome and to understand patterns of
chromosomal abnormalities across human cancers.

field theory | spectral graph theory | maximum entropy |
bioinformatics | molecular evolution

B iological data are often discrete and combinatorial. We
observe, for instance, some collection of macromolecular

sequences that take the form of a string of nucleotides or amino
acids. Or we make a multichannel neural recording, resulting in
a collection of strings composed of zeroes and ones correspond-
ing to the set of neurons that are firing at each instant in time.
A natural question given a collection of such strings is whether
we can estimate the probability distribution that these sequences
are drawn from (1–5).

Estimating such a probability distribution can be challenging
because the number of possible sequences grows exponentially
in sequence length, and even if the subset of biologically active
or relevant sequences is small compared with the entirety of the
space, this biologically relevant subset can still easily contain
thousands of sequences. As a result, estimating the frequency
of each possible sequence becomes impractical, and we require
some prior or set of simplifying assumptions in order to make
progress.

Among the most common simplifying assumptions is that the
true distribution takes the form of a maximum entropy dis-
tribution, defined as the most uniform (i.e., highest-entropy)
distribution compatible with certain summary statistics of the
sample (6). These summary statistics are often taken to be the
frequency of each possible letter at each position. In that case,

the resulting maximum entropy model is the well-known position
weight matrix, which represents the distribution of sequences
as the product of independent position-specific probability dis-
tributions (7, 8). Matching the correlations between positions
in addition to the site-specific frequencies results in pairwise
maximum entropy models, also known as Potts models (1,
9–18). Such pairwise interaction models have seen great suc-
cess in a variety of applications, including identifying functional
elements (9), predicting residues or positions that contact each
other or interact (14, 19, 20), and predicting the effects of
mutations (21).

Here, we provide a generalization of these maximum entropy
models that can achieve greater expressivity in well-sampled,
high-probability regions of sequence space while still providing
parsimonious density estimates in low-probability regions, where
data are by necessity sparse or absent. We do this by deriv-
ing a one-parameter family of Bayesian priors for probability
distributions over sequence space, with the single hyperparam-
eter controlling the expected deviation from the local geometry
implied by the maximum entropy assumption. The resulting
family of maximum a posteriori (MAP) estimates matches the
same moments as the corresponding maximum entropy model
and includes the maximum entropy model and the histogram
of observed frequencies for each sequence as limiting cases. In
nonlimiting cases, these models can capture correlations of all
orders, and they produce estimates that resemble the histogram
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of observed frequencies in densely sampled regions where the
data overwhelm the prior but also exhibit the smooth behavior
typical of a maximum entropy model in sparsely sampled regions.
At a more technical level, the method we propose is the discrete
multivariate analog of recently developed field-theoretic density
estimation techniques (22–28) for real-valued random variables.
One such approach (28) is known as density estimation using
field theory (DEFT), and we therefore refer to our method as
SeqDEFT.

In what follows, we describe the formal characteristics of our
method and then apply the method to two biological datasets.
The first of these datasets is the collection of all annotated 5′

pre-mRNA splice sites in the human genome (RNA sequences
of length nine). Because of the relatively large number of anno-
tated splice sites (305,106) compared with the number of possible
sequences (49= 262,144), this dataset allows us to use subsam-
pling to assess the characteristics and performance of our model
on complex distributions under varying amounts of training data.
For the second dataset, we consider the distribution of chro-
mosomal copy number abnormalities observed across human
cancers (29). Here, there are far fewer observations (10,522 sam-
ples) than there are possible karyotypic patterns (222= 4,194,304
under our scoring scheme). However, our method is still able to
recover the signatures of several complex aneuploid states cor-
responding to sets of multiple chromosomes that are frequently
altered together. Using an evolutionarily motivated visualization
strategy (30), we further explore and discuss the major features
of the inferred probability distributions for each of these two
datasets, with an emphasis on understanding the biological basis
for their complex, multimodal structure.

Results
We consider probability distributions defined on the Hamming
graph of sequences with length ` andα alleles per position, where
two sequences are adjacent if they differ in exactly one posi-
tion. To define a probability distribution Q on this graph, we
first define a field φ on the graph and then let the probability
of drawing sequence i be given by

Qi =
e−φi∑α`

j=1 e
−φj

. [1]

Thus, we can define a prior over probability distributions by
imposing a prior on this field φ. In what follows, we are particu-

Fig. 1. Illustration of a simple Hamming graph and a face thereof (α=

2, `= 3). Each node represents a sequence, and each edge corresponds to
a point mutation. The size of a node is proportional to the probability of
that sequence. A face consists of four sequences: one wild type (i), two sin-
gle mutants (j and k), and one double mutant (m). The conditional log odds
ratio for this face εijkm quantifies the association of the mutation from i to
j and the mutation from i to k on this face. This conditional odds ratio can
also be thought of as measuring how much the presence vs. absence of a
mutation at one of these two sites increases the frequency of the other
mutation [i.e., εijkm = (φk −φm)− (φi −φj) = (φj −φm)− (φi −φk), where
φi −φj =−(φj −φi) = log(Qj/Qi)].

larly interested in the “shape” or “geometry” of the field φ with
respect to the adjacency structure of the Hamming graph, both
in terms of its global structure such as the number of distinct
regions with low values of φ (i.e., “modes” of the probability dis-
tribution Q) as well as its local features such as its behavior on
specific sub-Hamming graphs (which correspond to conditional
distributions defined by restricting the possible alleles at a subset
of positions).

Extending the Independent Model. The maximum entropy model
based on the marginal frequencies of the alleles at each position
is equivalent to making an independent draw of the allele for
each position from the observed marginal frequencies. For con-
creteness, we will derive our method for this basic form of the
maximum entropy model before turning to the general case.

As noted earlier, our overall strategy is to think geometrically
about φ as a function on the Hamming graph. In particular, let
us consider the behavior of φ on one particular “face” of the
Hamming graph, where a face is defined by selecting two specific
positions out of the ` positions, a mutant and a wild-type allele
at each of these positions, and a specific sequence for the other
`− 2 positions. That is, we define a face as a choice of wild-type
sequence i , two single mutants j and k , and a double mutant m
(Fig. 1). Moreover, if we consider only sequences drawn from this
face, then we can capture the conditional association between
these two mutations in terms of the log odds ratio:

εijkm =φj +φk −φi −φm . [2]

For the special case of the independent model, the values of φ
are additive such that the double mutant φm is given by φ eval-
uated at the wild type plus the effects of each of the two single
mutants on φ: that is,

φm =φi + (φj −φi) + (φk −φi).

Rearranging this expression, it is easy to see that this implies that
for the independent sites maximum entropy model, the condi-
tional log odds ratio εijkm is zero for every face in the Hamming
graph.

To build a model that allows deviations from the maximum
entropy assumption while tending to make these deviations
small, we can thus construct a prior on functions φ where the
probability of φ is determined by the extent of the deviation from
the perfectly additive local geometry implied by the maximum
entropy model. In particular, since under the maximum entropy
model ε is zero for every face in the Hamming graph, we can
quantify the extent of the deviation from local independence by
considering the average squared conditional log odds ratio ε2,
where this average is taken over all faces of the Hamming graph.
In fact, it is possible to derive a simple formula for ε2 in terms
of the graph Laplacian L of the Hamming graph, where L is
defined as

L(i , j ) =


−1 i and j are at Hamming distance 1

` (α− 1) if i = j

0 otherwise.

In particular, if we let ∆ = (L2−αL)/2 and let s =
(
`
2

)(
α
2

)2
α`−2

be the number of distinct faces, then this average is given by the
positive semidefinite quadratic form ε2 =φT∆φ/s (31).

Using this expression for the mean squared log odds ratio, we
can then define a family of improper Gaussian priors on φ where
the prior probability is maximized for φ compatible with the max-
imum entropy model but which also allows a controllable degree
of nonadditivity. In particular, we use the prior

p(φ|a)∝ e−S0
a [φ] [3]
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in terms of the action

S0
a [φ] =

a

2s
φT∆φ, [4]

where S0
a [φ] = 0 for any φ that results in a maximum entropy (i.e.,

independent sites) model and a is a hyperparameter that controls
the expected magnitude of deviations from independence, with
larger values of a producing smaller deviations. In SI Appendix,
we show that the expectation of ε2 under the prior is given by
rank(∆)/a , where in this case, rank(∆) =α`− (α− 1) `− 1. We
also show that this prior is equivalent to independently drawing
the value of ε for each face in the Hamming graph from a zero-
mean Gaussian with variance s/a and then conditioning on these
local correlations being globally consistent with each other (cf.,
ref. 32) in the sense of being simultaneously realizable by some
choice of φ.

Given this prior distribution and a sample of size N with
realized frequencies given by the vector R, we can then derive
the corresponding posterior distribution, which in general, will
be non-Gaussian. Specifically, we find that under a multinomial
likelihood, the posterior distribution has p(φ|data, a)∝ e−Sa [φ]

where the posterior action Sa [φ] is given by

S0
a [φ] +N

α`∑
i=1

Riφi +N

α`∑
i=1

e−φi . [5]

The MAP estimate is then found by minimizing this action. We
show in SI Appendix that the MAP estimate approaches the max-
imum entropy solution in the limit as a→∞, approaches the
empirically observed frequencies in the limit as a→ 0, and for all
values of a matches the same moments as the maximum entropy
solution.

Extending Pairwise and Higher-Order Maximum Entropy Models. So
far for concreteness we have concentrated on providing a non-
parametric extension to the independent model, which is the
maximum entropy model that matches the observed frequencies
of the alleles at each position. However, we can also general-
ize the above approach to provide analogous results for pairwise
and higher-order (33) maximum entropy models by making a
corresponding change to the prior.

In particular, let us consider the maximum entropy model that
matches the moments of our observations up to order P − 1. As
we have seen for P = 2 (the independent model), the key geo-
metrical feature of the maximum entropy φ is that each mutation
(i.e., set of parallel edges in the Hamming graph) has a constant
effect on φ, so that the conditional log odds ratio defined on each
face of the Hamming graph is zero. In the preceding section, we
constructed a relaxation of this maximum entropy model by con-
sidering the average squared conditional log odds ratio, where
this average is taken over all faces of the Hamming graph.

To extend this same idea to P = 3, which is the pairwise inter-
action model that matches the site-specific allele frequencies and
pairwise correlations between sites, we note that in this case the
conditional log odds ratio takes the same value for any two faces
that are defined by the same pair of mutations, regardless of the
identity of the states at the other `− 2 sites. Thus, for a pair of
adjacent parallel faces (such as the red and black faces in Fig.
1), the difference between the conditional log odds ratios must
be zero. These adjacent parallel faces form 3-faces or cubes, and
we can measure the local departure from the implied maximum
entropy geometry by the difference in conditional log odds ratios
on these pairs of adjacent faces. To get a global summary of this
departure, we can average the squared value of this difference
over all such subcubes of the Hamming graph and define a fam-
ily of priors parametrized by the expected value of this mean

squared departure from the local geometry of a pairwise max-
imum entropy model. Similarly, for a maximum entropy model
that matches the first P − 1 moments, our extension is based on
defining a prior in terms of the expected mean squared deviation
from the local geometry implied by the corresponding maximum
entropy assumption, where the average is taken over all P faces
of the Hamming graph.

More formally, to define this prior, consider the operator

∆(P) =
1

P !

P−1∏
k=0

(L−αkI ), [6]

where I is the identity matrix, and let s =
(
`
P

)(
α
2

)P
α`−P be the

number of P -dimensional faces of the Hamming graph. Then,
φT∆(P)φ/s gives the mean squared value of the log conditional
P -way association (SI Appendix), and so, we define the prior
action to be

S0
a [φ] =

a

2s
φT∆(P)φ. [7]

Under this prior, 1) the MAP estimate always matches the first
P − 1 moments of the observations, 2) the limit as a→∞ results
in the maximum entropy model, 3) the limit as a→ 0 results
in the empirically observed distribution, 4) the expected mean
squared conditional log P -association under the prior is given
by rank(∆(P))/a , and 5) we can likewise construct this prior by
drawing the conditional P -association for each P -face from a
zero-mean normal distribution with variance s/a (SI Appendix
has details).

Maximum Entropy and the Eigendecomposition of L. These general
P results are largely explicable in terms of the eigendecompo-
sition of the graph Laplacian L of our Hamming graph, whose
eigenspaces have a close relationship with maximum entropy
models over sequence space. In particular, L has only `+ 1 dis-
tinct eigenvalues, which are of the form λk =α k for k = 0 to `,
and the eigenspace associated with λk has dimension

(
`
k

)
(α−

1)k . In fact, finding a maximum entropy φ that matches the
first P − 1 moments of a probability distribution on the Ham-
ming graph corresponds exactly to finding the φ satisfying these
moment conditions within the linear subspace generated by the
eigenvectors associated with λ0 through λP−1. Moreover, this
same linear subspace is also the null space of the operator ∆(P),
consisting of the φ for which φT∆(P)φ= 0. Thus, in sequence
space, finding the φ that satisfies the maximum entropy assump-
tion not only implies a specific local geometry of φ, but this local
geometry φT∆(P)φ= 0 is actually equivalent to the maximum
entropy assumption itself.

More specifically, a key result in the general theory of max-
imum entropy distributions is that for a set of constraints of
the form EQ f (1) = c(1),EQ f (2) = c(2), . . . (where EQ f is the
expected value of the function f under draws from the distribu-
tion Q), any distribution that satisfies these constraints specified
by a φ of the form φ=

∑
i θ

(i)f (i) for these same functions f (i)

and some set of coefficients θ(i) is the unique maximum entropy
distribution (e.g., theorem 12.1.1 in ref. 6) (SI Appendix). In the
case of maximum entropy distributions over sequence space, the
constraints are typically that the inferred distribution matches
the first P − 1 moments of the empirical distribution or equiv-
alently, the (P − 1)th-order marginals. These marginals can be
set as constraints by letting the f (i) be indicator functions for
matching a specific set of states at a specific set of P − 1 posi-
tions and letting c(i) be the corresponding marginal. Importantly,
these indicator functions span a subspace identical to the sub-
space spanned by the eigenvectors associated with λ0 through
λP−1 of the graph Laplacian (SI Appendix). Now, from Eq. 6,

Chen et al.
Field-theoretic density estimation for biological sequence space with applications to 5′ splice site
diversity and aneuploidy in cancer

PNAS | 3 of 12
https://doi.org/10.1073/pnas.2025782118

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025782118/-/DCSupplemental
https://doi.org/10.1073/pnas.2025782118


www.manaraa.com

we observe that the operator ∆(P) is a polynomial in L, and one
can show (SI Appendix) that each eigenvalue–eigenvector pair
of L with λk =α k is transformed to an eigenvalue–eigenvector
pair of ∆(P) with eigenvalue αP

(
k
P

)
and an identical eigenvec-

tor. Since
(
k
P

)
is zero for k <P and positive for k ≥P , we see

that the null space of ∆(P) is simply the subspace of maximum
entropy φ. Thus, finding a φ that satisfies the moment constraints
and maximizes the entropy is the same as finding a φ that satis-
fies these constraints and respects the equivalent local geometry
φT∆(P)φ= 0.

The above analysis also clarifies several other aspects of
the prior. For example, rank(∆(P)) is just α` minus the
dimensionality of the subspace of maximum entropy models,∑P−1

k=0 (α− 1)k
(
`
k

)
, and a ∆(P)/s is the precision matrix of an

improper Gaussian distribution with infinite variance in the
directions corresponding to the φ that form valid maximum
entropy models based on the first P − 1 moments. Intuitively,
this flat prior for the subspace of maximum entropy models
explains why the SeqDEFT MAP estimate exactly matches the
first P − 1 moments of the empirical distribution. However, our
prior also specifies a (proper) Gaussian prior on the orthog-
onal complement of this maximum entropy subspace, and the
magnitude of this second component is controlled by setting the
expected value of φT∆(P)φ/s , which is the mean squared devi-
ation from the local geometry that defines the corresponding
maximum entropy model. Moreover, the value of this non-
maximum entropy component is conditionally independent for
sequences i and j with Hamming distance greater than P since
the precision matrix a∆(P)/s has nonzero entries only for pairs
of sequences with Hamming distance less than or equal to P (SI
Appendix). Thus, intuitively, the family of priors we propose is
the family where the direct dependencies in the complement of
the maximum entropy subspace are restricted to being as local as
possible.

Practical Implementation. The posterior action Sa [φ] given by Eq.
5 is a nonlinear function of α` variables, and there is no explicit
formula for the vector φ that achieves the minimum. Nonethe-
less, following ref. 27, we show that the minimization problem
is convex (SI Appendix), and at a practical level, we can calcu-
late the minimum numerically for sequence spaces containing up
to low millions of sequences by exploiting sparsity. In particular,
due to the product form for ∆(P) given in Eq. 6, most of the cal-
culation can be implemented via repeated matrix multiplication
by the sparse matrix L.

Another issue is how to choose the value of the hyperparame-
ter a . Here, we choose this value by maximizing the k -fold cross-
validated log likelihood with k = 5 and refer to the resulting
optimal value as a∗. In SI Appendix, we describe an alternative
approach for finding a∗ (for small sequence spaces) using the
evidence ratio.

Finally, while our method is defined in terms of a specific
Gaussian prior, the posterior is non-Gaussian, and we imple-
ment posterior sampling using Hamiltonian Monte Carlo (34);
SI Appendix has details.

Distribution of Human 5′ Splice Sites
In most eukaryotes, the sequence of the final processed form
of a messenger RNA (mRNA) transcript is not encoded con-
tiguously in the genome but rather, appears as several discrete
segments known as exons that are separated by other DNA seg-
ments known as introns. During transcription, both the intronic
and exonic DNA are transcribed into RNA, after which the
intronic RNA is removed in a process known as pre-mRNA splic-
ing (35). To demonstrate the characteristics of our SeqDEFT
method, we first considered 5′ splice sites, the RNA sequences

at the boundary between each intron and its upstream exon (36).
Because there are hundreds of thousands of such sites in the
human genome, 5′ splice sites provide a relatively well-sampled
model system for understanding the complexity and geometry
of high-dimensional distributions in sequence space, as well as
an opportunity to subsample real data in order to investigate
the performance of our method when less data are available.
Moreover, the modeling and identification of splice sites was
one of the early successes of maximum entropy models with
pairwise interactions, and maximum entropy remains a common
method for scoring splice sites (9). On the other hand, the vast
majority of sequences that are annotated to have splicing activity
are annotated only a small number of times across the genome
(e.g., 89.3% of unique 5′ splicing sequences are annotated 20
or fewer times), so that formal density estimation techniques
are still needed to accurately determine the frequencies of most
sequences with observed splicing activity.

For each annotated intron in the human genome, we extracted
the last three positions of the upstream exon (which are also
generally under selection for their amino acid coding activity
and typically labeled as −3, −2, −1) and the first six positions
of intron itself (labeled +1 through +6). In total, this resulted
in a collection of 305,106 nine-nucleotide sequences, which we
modeled using SeqDEFT with P = 2, so that our model is a
nonparametric extension of the independent sites model. To
understand the qualitative behavior of SeqDEFT on datasets
of different sizes, we further performed a rarefaction analysis,
where we trained models on 25%, 5%, or 1% of the data. In
Fig. 2, Top, we see that at very low sampling, the SeqDEFT
MAP estimate Q∗ behaves very similarly to the independent
sites maximum entropy model but becomes substantially differ-
ent as the amount of data increases. Fig. 2, Middle compares the
SeqDEFT estimate from the subsampled data with the estimate
using the full dataset, and we see that the SeqDEFT distribution
has taken a relatively similar form to its fit on the full dataset by
the time we have given it 25% of the data. Fig. 2, Bottom shows
the predicted frequency vs. the observed frequency (SI Appendix,
Fig. S1A shows credible intervals based on posterior sampling,
and SI Appendix, Fig. S2A shows hyperparameter tuning). We
see that the MAP estimate under SeqDEFT closely approxi-
mates the empirical frequency for states with greater than on
the order of 10 observations, and thus, the smoothness included
by the prior essentially only influences our predictions in the
more sparsely sampled regions of sequence space (as shown
by deviations from the line y = x ). With increasing data, the
breakpoint between these two regimes moves to proportionally
lower-frequency states.

To gain some intuition for why SeqDEFT behaves differently
in well-sampled vs. poorly sampled regions of sequence space,
it is helpful to consider the form of the posterior action. The
first term a

2s
φT∆(2)φ is the prior action and favors conditional

log odds ratios that are as close to zero as possible. The sec-
ond and third terms, N

∑α`

i=1 Riφi +N
∑α`

i=1 e
−φi , measure the

match between φi and the observed data and are minimized by
setting φi equal to the negative logarithm of the observed fre-
quency Ri . However, the value of these last two terms is relatively
insensitive to the value of φi when the number of observations
NRi is zero (e.g., if NRi = 0, then the corresponding φi does
not contribute to the second term and contributes minimally to
the third term as long as Qi ∝ e−φi is small). Thus, the prior
dominates in regions of sequence space where the number of
observations is small, producing an MAP estimate with small
conditional associations in these regions, whereas well-sampled
sequences are predicted to have frequencies similar to those that
are empirically observed.

Another useful comparison is with the pairwise maximum
entropy fit (Fig. 3, Left). We see that SeqDEFT and the
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Fig. 2. Behavior of SeqDEFT with changing sample size. Top plots the SeqDEFT MAP estimate vs. the independent sites maximum entropy model. Middle
shows the SeqDEFT estimate using the full dataset vs. the estimates for the smaller samples. Bottom shows the SeqDEFT estimate vs. the sampled frequencies.
In order to show the class of sequences that were not observed in the sample, we added a pseudocount of one to the sequence counts. Thus, the vertical
striations indicate sequences that were observed zero, one, two times, etc. Column headings indicate the proportion of annotated 5′ splice sites from the
human genome used while fitting the models.

pairwise maximum entropy model are in closer agreement
for high-frequency sequences than SeqDEFT and the inde-
pendent model. However, for low- and intermediate-frequency
sequences, SeqDEFT still produces a much narrower range of
estimates.

Why do the independent sites and pairwise maximum entropy
models produce such a wide range of estimates in low-frequency
regions of sequence space? The key observation is that for these
maximum entropy models there is an assumption that some fea-
ture of the data remains constant over all of sequence space
(e.g., for the independent model, each possible mutation has
a constant multiplicative effect on frequency, and for the pair-
wise model, the conditional log odds ratio between any given
pair of mutations is constant over all of sequence space). More-
over, these constants are determined by the moments of the
sample, which are primarily influenced by the high-frequency
sequences. Thus, if for example a pair of mutations is associated
among the high-frequency sequences, the pairwise maximum
entropy model will assume that they remain associated even in
regions of sequence space where we have no data to support
this association. In contrast, SeqDEFT allows these associa-
tions to decay in regions of sequence space where there are
no data to support them. Such behavior is also in better accor-
dance with biological intuition in that, for example, correlations
between positions in functional sequences are due to natural
selection on that function, and thus, these correlations should
not be observed in regions of sequence space that consist of
nonfunctional sequences.

Another important difference between the maximum entropy
models and SeqDEFT concerns SeqDEFT’s ability to learn

components of the probability distribution that are at lower
frequencies (e.g., in treating a multimodal distribution, the max-
imum entropy solution will tend to fit the largest of the modes
while providing a poor fit for other modes that might have
strong statistical support but contain a small absolute fraction
of the total probability). The 5′ splice sites provide a good
illustration of this principle. The vast majority of splice sites
have a G in the +1 position and a U or C in the +2 posi-
tion, but a small fraction (1.68% in our dataset) has other
nucleotides (37, 38), and A in the +1 position in particular
can be recognized by a different splicing machinery known as
the minor spliceosome (39). Fig. 3, Center shows SeqDEFT’s fit
to these atypical non +1 G or non +2 U/C sequences, while
Fig. 3, Right shows the fit of the pairwise maximum entropy
model to these same sequences. We see that SeqDEFT is
able to learn the density for these atypical sequences, whereas
the pairwise maximum entropy model produces a qualitatively
incorrect fit. In fact, both the independent model and the
pairwise maximum entropy model show substantial deviations
between the observed and learned sequence frequencies for
many relatively high-frequency sequences, far beyond what can
be accounted for by the binomial variability inherent in counts-
based frequency estimation, whereas the MAP SeqDEFT esti-
mates and posterior samples essentially match both the observed
counts and the expected binomial variability (SI Appendix,
Fig. S3).

For pairwise maximum entropy models, in order to identify
positions that may be interacting, it is common to construct heat
maps showing the magnitude of the inferred coupling param-
eters between any given pair of positions, which are meant to
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Fig. 3. Comparison of SeqDEFT and pairwise maximum entropy models fit to the distribution of human 5′ splice sites. Left shows the SeqDEFT MAP estimate
vs. the pairwise maximum entropy fit. Center shows the SeqDEFT MAP estimate vs. the empirically observed frequency for the subset of 5′ splice sites that
do not have the canonical +1 G and +2 U/C nucleotides. Right shows the pairwise maximum entropy fit vs. the observed frequency for the subset of 5′ splice
sites that do not have the canonical +1 G and +2 U/C nucleotides. ρ denotes the Pearson correlation.

quantify the direct influence of one position in a sequence on
another. The local interaction coefficients εijkm in our SeqDEFT
framework play a similar role to these couplings and quantify
the direct influence of one mutation on another by determin-
ing their interaction on a fixed genetic background (in fact, in
the maximum entropy limit, the εijkm can be easily derived from
the couplings via Eq. 2, and the couplings can be recovered
from the εijkm by simple averaging, see SI Appendix). We can
thus construct similar plots by displaying an appropriate sum-
mary statistic for the distribution of local interaction strengths,
such as the root mean square (RMS) conditional log odds ratio
for specific pairs of mutations (i.e., pick a pair of mutations at
a pair of positions, average the squared log odds ratio for that
pair of mutations over all possible choices for the other `− 2
positions, and then, take the square root of this value). Fig. 4,
Left shows a heat map of this type, and it is easy to see that the
strongest interactions are between mutations altering the con-
sensus +1 G and mutations altering the consensus G at the
–1 position or the consensus U at +2 position, but it is also
clear that there are interactions between many other pairs of
mutations.

However, unlike the pairwise maximum entropy model, which
must produce a single conditional log odds ratio for any given
pair of mutations, SeqDEFT allows the strength and direction
of the association between each pair of mutations to vary with
the genetic background. Thus, rather than look at a single sum-
mary statistic of association strength between pairs of mutations,
we can also take a more detailed view by plotting histograms of
the log odds ratios inferred for different genetic backgrounds
(i.e., how the log odds ratio varies over the different faces of
the Hamming graph). Importantly, while 12.6% of the faces
of the Hamming graph contain at least one observed splice
site, only 0.5% of the faces are composed entirely of observed
splice sites, so that some inference of the underlying density
is essential to examine this variability in the strength of local
associations.

Fig. 4, Upper Right shows these distributions for mutations to
the consensus nucleotides at the +1 and +2 positions. We see
that these histograms are strongly right skewed, a pattern that
likely arises because mutations to either of these nucleotides
typically render a functional splice site nonfunctional (produc-
ing a strong positive association in the conditional distribution)
but have little effect on an already nonfunctional splice site. The
solid vertical lines in the plots indicate the mean conditional log
odds ratio (averaged over all faces in the Hamming graph), while
the dashed vertical lines indicate the constant log odds ratio for
all such faces assigned by the pairwise maximum entropy model.

Fig. 4, Lower Right shows a similar set of distributions for inter-
actions between the –1 and –2 positions. A careful examination
of these histograms shows that they are typically trimodal, with a
large central mode and two smaller side modes, indicating that a
subset of sites shows a substantial interaction between these two
mutations but that the sign of this association differs depend-
ing on the genetic background. Thus, our SeqDEFT estimate
suggests that the sign and strength of the association between
a pair of mutations can vary in a complex manner depend-
ing on the genetic background, an observation that is qualita-
tively incompatible with the assumptions of a pairwise maximum
entropy model.

Visualizing the Inferred Geometry Using an Evolutionary Model. A
key strength of nonparametric approaches such as SeqDEFT is
that, provided sufficient data, they can capture whatever com-
plex geometry is present in the data. However, this comes at
the expense of interpretability because we can no longer express
the inferred distribution in terms of a small number of param-
eters. We have already explored one way of overcoming this
difficulty in the form of the summary statistics and histograms
shown in Fig. 4. A different solution is to attempt to visual-
ize or represent the inferred distribution in such a way that the
visualizations allow us to identify the major qualitative features
of the distribution and explore the underlying causes of these
features.

The visualization approach we take here (30) is based on
considering our inferred probability distributions over sequence
space as being the result of an evolutionary process (SI Appendix
has details). The main idea is that biological evolution can be
viewed as the process of a population taking a random walk over
sequence space, where each step in the random walk consists of
the replacement of one sequence in the population by another,
and the role of natural selection is to bias the probability that any
given mutational neighbor of the current sequence becomes fixed
(40, 41). With this idea in mind, given an inferred distribution
over sequence space we can write down a model of molecular
evolution as a reversible Markov chain that takes the inferred
distribution as its stationary distribution, and then use the sub-
dominant eigenvectors of the rate matrix of the Markov chain
to construct an embedding of the graph where clusters of ver-
tices correspond to sets of initial states from which the Markov
chain approaches stationarity in a similar manner; we refer to
these axes as diffusion axes (42) because they capture the slow
modes of the diffusion of the probability distribution describ-
ing the location of the population in sequence space. Impor-
tantly, inference of the underlying density over sequence space is
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Fig. 4. Interactions between pairs of mutations in the SeqDEFT fit. Left shows the exponentiated RMS conditional log odds ratio between each possible
pair of mutations under the MAP SeqDEFT fit. The RMS conditional log odds ratio is calculated by averaging the squared conditional log odds ratio over the
faces of the Hamming graph corresponding to a given pair of mutations and is exponentiated to express the effective strength of the association between
any given pair of mutations on the same scale as the odds ratio. To provide a more fine-grained view of the variation in the strength of these associations
between different faces of the Hamming graph, Right shows histograms of the distribution of log odds ratios for mutations away from the consensus bases
at the +1 and +2 positions (Upper Right) and at the –2 and –1 positions (Lower Right). The major tick on the x axis of each histogram indicates a log odds
ratio of zero, and the other ticks are placed at intervals of 1 unit on the log odds scale. To aid comparison, the histograms are shown with a limited range of
conditional log odds ratios on the x axis, but the full range of inferred conditional log odds ratios is shown by the bracketed values at the top of each panel.
Mutations are polarized from the more preferred to the less preferred state, so that positive associations typically indicate that either of the single mutants
results in loss of function, while a negative association indicates that the two mutations are tolerable individually but not jointly. The solid vertical lines
indicate the mean of the log odds ratios, while the dashed vertical lines indicate the uniform conditional log odds ratio assigned to that pair of mutations
under the pairwise maximum entropy model.

essential for implementing an approach of this type due to the
sparsity of our observations; for instance, the set of observed
splicing sequences contains over 1,000 disconnected compo-
nents, and so, we need a method of predicting the frequencies of
unobserved sequences in order to be able to define a model
of molecular evolution over the full range of biologically active
sequences.

To briefly describe the visualization method at a more tech-
nical level, we first note that in certain standard models of
molecular evolution, the quantity logQ∗i is equal to the prod-
uct of the fitness of state i and the effective population size,
so that population genetic theory predicts that if each possible
point mutation occurs at rate 1, a population currently fixed for
sequence i becomes fixed for sequence j at rate

Tij =
logQ∗j − logQ∗i

1− e−(logQ∗j −logQ∗i )

for mutationally adjacent sequences i and j (40, 43); we set
the leaving rate from sequence i , Tii , so that the row sums
of the matrix T are all zero. Since the Markov chain gener-
ated by the rate matrix T satisfies detailed balance, we can

construct the eigendecomposition T =−
∑α`

k=1 λk r
(k)(l (k))T

where l (k) and r (k) are the left and right eigenvectors, respec-
tively, of T associated with the eigenvalue −λk ; the l (k) and
r (k) are normalized such that (l (k))

T
r (k) =

∑
i (r

(k)
i )

2
/Q∗i =

1; and we order the eigenvalues so that 0 =λ1<λ2≤
λ3 . . .≤λα` . For a d -dimensional visualization of our Markov
chain, we can then plot each sequence i with coordinates√

1/λ2 l
(2)
i , . . . ,

√
1/λd+1 l

(d+1)
i . Thus, the coordinates for

sequences along any axis are just the entries of an eigenvec-
tor describing one of the slow modes of the system, where
these eigenvectors have been rescaled by the square root of
the corresponding relaxation time 1/λk (this rescaling results
in a connection between distances in the visualization and the
expected waiting time to evolve from sequence i to j , see SI
Appendix for details). In the case at hand, we are considering a
population evolving under selection to have a functional splice
site at a particular location in the genome under the assump-
tion that the stationary distribution for this process is given by
the inferred distribution of 5′ splice site sequences given by
SeqDEFT. Fig. 5 shows the resulting visualization, where we
have fixed the +1 and +2 positions to be the canonical GU
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nucleotides in order to best display the geometrical features of
the subset of functional sequences (SI Appendix, Fig. S4 shows
the corresponding visualizations over all of sequence space).

Fig. 5 shows the first three diffusion axes. Sequences are col-
ored according to their inferred frequency, and edges connect
sequences that differ by a single point mutation. We see that
there is a connected cluster of sequences similar to the canonical
binding motif CAG/GUAAGU that is stretched along diffusion
axis 1 and then, two clusters of moderate frequency with extreme
values on diffusion axis 2 or diffusion axis 3. To understand
the structure of the main streak, it is helpful to know that the
canonical 5′ splice site is recognized and bound by a small
nuclear RNA (snRNA) known as the U1 snRNA with which
it forms a series of adjacent base pairs resulting in a helical
structure (36). Moreover, it has been previously observed that
5′ splice sites show a pattern of 5′/3′ compensation or “see-
saw” linkage where mismatches in the exonic portion of the
binding site are associated with consensus nucleotides in the
intronic portion and vice versa (44–46). The long axis of the
streak turns out to correspond to this pattern in the locations
of mismatches between the 5′ splice site and U1 snRNA, with
sequences that primarily form base pairs in the exonic por-
tion of the splice site having negative values on diffusion axis 1
and sequences that bind via base pairs in the intronic portion
having positive values (SI Appendix, Fig. S5 shows the aver-
age position of consensus bases for sequences in the streak
as a function of position along diffusion axis 1). These two
sides of the streak are broadly separated because it would
take many mutations to transform a sequence forming pri-
marily exonic base pairs into a sequence forming primarily
intronic base pairs with mismatches in the exonic portion of the
binding site.

Other than the main streak of sequences that appear to bind
via minor variations on the canonical 5′ splice site motif, there
are two smaller clusters of high-frequency sequences plotted far

from the main streak. The cluster with a negative value on diffu-
sion axis 2 corresponds to sequences that are recognized by the
minor spliceosome (39). This machinery recognizes the 5′ splice
site via binding with the U11 rather than U1 snRNA, and this
recognition occurs in conjunction with another protein known
as 48K, where the 48K protein contacts the +1 and +2 posi-
tions and binding with U11 is completely intronic beginning at
the +3 position (47). The other small cluster of high-frequency
sequences turns out to correspond to a previously characterized
noncanonical binding mode known as the shifted +1 register
(48) where U1 snRNA binding forms a gapped helical structure
that is shifted one base pair over from the canonical motif but
where the position of the splicing reaction (transesterification)
itself remains unchanged.

Now that we have identified the major geometric features
of the inferred probability distribution and identified each of
them as corresponding to a distinct biophysical mechanism of
splice site recognition, we can also use these visualizations to
ask questions about the evolution of binding by considering
different paths that populations can take through sequence
space. For example, it has been previously observed in genomic
comparisons between different species that individual splice sites
can be “converted” from being recognized by the minor spliceo-
some to being recognized by the major spliceosome and vice
versa (49, 50). In our visualizations, we see that the sequences
recognized by the minor spliceosome have large negative values
on diffusion axis 1 and that for sequences similar to the canon-
ical motif, diffusion axis 1 separates sequences where U1 binds
primarily to the exonic portion of the splice site (negative values
on diffusion axis 1) from those where it binds primarily in the
intronic portion (positive values on diffusion axis 1). This sug-
gests that conversion is most likely to occur via a transition from
minor spliceosome recognition to a sequence capable of being
recognized by U1 via the gain or loss of a CAG motif in positions
–3 to –1 (i.e., paths leading up or down the left side of Fig. 5).

Fig. 5. Visualization of the distribution of 5′ splice sites inferred by SeqDEFT. Visualization uses the method of ref. 30, where log Q∗i is equated with
the scaled fitness of sequence i, and this quantity is used to define an evolutionary Markov chain whose stationary distribution equals the MAP SeqDEFT
estimate (conditioned on the +1 and +2 positions being the canonical GU nucleotides). Sequences are colored according to their estimated frequency, and
edges connect sequences that are adjacent under point mutations. Under the visualization method, squared Euclidean distances optimally approximate the
expected time to evolve from one sequence to another, and we scale time so that each possible point mutation occurs at rate 1. The figure shows the first
three diffusion axes, which are rescaled subdominant eigenvectors of the transition matrix for the Markov chain. The cartoons show hypothesized binding
mechanisms. The analogous visualization based on the pairwise maximum entropy density estimate does not show any obvious structure (SI Appendix,
Fig. S6).
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Distribution of Karyotypic Abnormalities in Cancer
Our exploration of the distribution of human 5′ splice sites both
demonstrated SeqDEFT’s behavior in the well-sampled regime
and highlighted the rich geometry of biological distributions that
can be captured via a nonparametric approach. We now turn to
an example in the poorly sampled regime, where the number of
sequences far exceeds the number of observations. In particular,
we consider the problem of karyotypic abnormalities in human
cancers, where cancerous cells frequently exhibit a bewildering
array of changes to the structure and number of chromosomes
ranging from losses and duplications of small portions of indi-
vidual chromosomes to duplications and losses of chromosome
arms, translocations that attach a portion of a chromosome to
another, duplications and losses of whole chromosomes, and
(multiple) whole-genome duplications (51). Moreover, the root
causes of these changes in genomic structure remain poorly
understood because chromosomal copy number changes can
either promote or inhibit cellular proliferation depending on the
specific alterations involved (52–54).

To better understand the distribution of karyotypic states
exhibited by human cancers, we considered karyotypes inferred
for 10,522 tumors (29) collected as part of The Cancer Genome
Atlas (55). Starting with the simplest possible approach, we
considered each of the 22 autosomes and scored each auto-
some as being either euploid or aneuploid, where we scored
a chromosome as aneuploid if ref. 29 reported that chromo-
some as exhibiting large-scale alterations from the background
cellular ploidy. Under this scoring scheme, we observe 7,443
distinct karyotypic states in our dataset, which is only a tiny
fraction (0.18%) of the 222 = 4,194,304 possible states whose
frequencies we seek to estimate. Moreover, even among the
sampled sequences, our data are highly sparse in that the vast
majority (91.9%) of observed karyotypic states were observed
only once.

In fitting these data with SeqDEFT, we observed that the
pairwise maximum entropy model had a greater cross-validated
log likelihood than our model using ∆(2) (i.e., the pairwise
maximum entropy model provided a higher likelihood fit than
a model based on a perturbation of the independent model)
(SI Appendix, Fig. S2 C and D). This was likely caused by a
particularly strong global pattern of nonindependence between
chromosomal states wherein observed karyotypes were roughly
uniformly (rather than binomially) distributed in terms of their
number of aneuploid chromosomes (SI Appendix, Fig. S7A), indi-
cating a strong enrichment for chromosomal configurations that
are either perturbations of the standard euploid genome with a
handful of altered chromosomes or else nearly completely aneu-
ploid (SI Appendix, Fig. S7B). This observation is consistent with
the well-known phenomenon of chromosomal instability, where
deviations from a euploid karyotype result in further mitotic
errors and hence an increasingly high degree of aneuploidy (56).
We therefore proceeded with an analysis based on ∆(3), which
relaxes the constraints of the pairwise model. Importantly, the
pairwise maximum entropy model treated all chromosomes in an
approximately uniform manner, where the marginal frequencies
of aneuploidy for each chromosome have a mean of 0.41 and
SD of 0.06 for each chromosome and the conditional log odds
ratios have a mean of 0.23 and an SD of 0.17 so that the pres-
ence of any one chromosomal alteration increases the probability
of each of the others by an approximately constant factor. Thus,
while the maximum entropy model does a good job capturing the
overall bimodality of the data, it does not appear to be capturing
more detailed interactions between specific pairs or subsets of
chromosomes.

Using ∆(3), we find that a∗= 7.9× 105, resulting in an
increase of 422.4 in the cross-validated log likelihood relative
to the pairwise maximum entropy model (SI Appendix, Fig. S1B

shows posterior variance estimates, and SI Appendix, Fig. S2D
shows hyperparameter tuning). Although the SeqDEFT predic-
tions are mostly similar to the pairwise maximum entropy model,
there are also relatively dramatic differences for a subset of
sequences that SeqDEFT predicts to be at much higher frequen-
cies than the pairwise maximum entropy model (SI Appendix,
Fig. S7C).

To better understand what these high-frequency sequences
are, we turn to our visualization technique (30). Here, our appli-
cation of the visualization technique is somewhat less principled
since a cancer’s exploration of sequence space is not stationary
but rather ends in either the patient’s death or eradication of
the tumor, and there are a number of other differences such as,
for example, gains or losses of multiple chromosomes at once
(so that evolution is not restricted to the edges of the Hamming
graph) and polyclonality within the tumor (so that the tumor con-
tains cells with a number of different karyotypic states rather
than a single state for each time). Nonetheless, the visualiza-
tions do provide insight into the basic geometry of the inferred
probability distribution and hence indirectly into the process that
generated it.

Fig. 6 shows the resulting visualization. Here, diffusion axis
1 picks out the number of chromosomes that are altered, with
the wild-type euploid karyotype having a large negative value on
this axis and the karyotype where all chromosomes are aneuploid
having a large positive value (faint striations are also visible,
which correspond to the Hamming distance from the wild-type
sequence). However, diffusion axis 2 reveals two sets of unusually
high-frequency sequences found in a region of sequence space
where most other sequences have much lower frequency. In par-
ticular, the tip sequences for these protrusions are karyotypes
with simultaneous copy number changes at chromosomes 1, 2, 6,
10, 13, 17, and 21 or at chromosomes 6, 7, 9, 10, 19, and 20. Diffu-
sion axis 3 then reveals the geometric relationship between these
high-frequency sets, showing that they are two distinct regions
in sequence space that both branch off the main arc that con-
nects the wild type to the all-aneuploid state. Fig. 6, Right also
shows a protrusion of high-frequency sequences around the state
with chromosomes 2, 3, 7, 12, 16, 17, 20, and 21 simultaneously
altered, which turns out to appear as a third branch-like protru-
sion when we include diffusion axes 4 and 5 in our visualizations
(SI Appendix, Fig. S8).

What do these visualizations tell us about the geometry of
our inferred probability distribution? Our evolutionary Markov
chain treats log frequency as a measure of evolutionary fitness.
Thus, it treats the wild-type and all-aneuploid sequences as two
major fitness peaks, separated by the broad valley of partially
aneuploid sequences, so that populations typically stay at one
of these two peaks or the other but occasionally stochastically
transition from one to the other. However, within this valley,
we have observed three clusters of high-frequency sequences,
with local frequency (and hence, fitness) maxima at states with
chromosomes {1, 2, 6, 10, 13, 17, 21}, {6, 7, 9, 10, 19, 20}, or
{2, 3, 7, 12, 16, 17, 20, 21} altered. Populations that wander
into the basin of attraction of these local fitness maxima can
become stuck there, leading to long waiting times for these pop-
ulations to visit the other maxima and hence, large distances
between these maxima in our visualizations. Importantly, using
the pairwise maximum density estimate for the visualization does
not reveal any of this fine-scale structure (SI Appendix, Fig. S9),
which demonstrates the power of our nonparametric approaches
to capture the qualitative features of this complex dataset even
when the size of sequence space is orders of magnitude larger
than the number of observed sequences.

To better understand the biological basis of these local max-
ima in our inferred probability distribution, we also considered
which specific tissue types and specific modes of chromosomal
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Fig. 6. Visualization of the distribution of human karyotypes based on data from ref. 29. Visualization uses the method of ref. 30, where log Q∗i is equated
with the scaled fitness of karyotype i, and this quantity is used to define an evolutionary Markov chain whose stationary distribution corresponds to the
MAP SeqDEFT estimate. Sequences are colored according to their estimated frequency, and edges connect sequences that can be transformed one into the
other by changing the state of a single chromosome. The figure shows the first three diffusion axes for a binary encoding of the karyotypic state, where
each of the 22 autosomes is scored as being euploid or aneuploid; the pattern of aneuploid chromosomes is indicated for key local maxima in the estimated
probability distribution. SI Appendix, Fig. S8 shows diffusion axes 4 and 5. WT, wild type.

alteration (e.g., chromosomal gain or loss) contributed to these
maxima. We found that the regions around {1, 2, 6, 10, 13, 17,
21} and {2, 3, 7, 12, 16, 17, 20, 21} were composed of can-
cers that originated in kidney tissue and that the region around
{6, 7, 9, 10, 19, 20} was based in observations of brain cancers,
with other tissue types making little or no contribution to these
local maxima (SI Appendix, Fig. S10). Furthermore, we found
that the simultaneous chromosomal alterations at chromosomes
{1, 2, 6, 10, 13, 17, 21} or {2, 3, 7, 12, 16, 17, 20, 21} were
in fact largely attributable to different kidney cancers, with the
heightened frequency around {1, 2, 6, 10, 13, 17, 21} primarily
due to chromophobe renal cell carcinoma and the heightened
frequency around {2, 3, 7, 12, 16, 17, 20, 21} primarily due to
kidney renal papillary cell carcinoma; kidney clear cell carcinoma
made some contributions to both regions (SI Appendix, Fig. S11).
Indeed, for {1, 2, 6, 10, 13, 17, 21}, the specific attracting pat-
tern appears to be losses of all seven of these chromosomes, a
pattern that has previously been recognized as a signature of
chromophobe renal cell carcinoma (57), whereas for {2, 3, 7,
12, 16, 17, 20, 21}, the observed pattern is simultaneous copy
number gains for all these chromosomes, a pattern that has also
been noted in the literature as being a signature of renal papil-
lary cell carcinoma (58). For the region around {6, 7, 9, 10, 19,
20}, the pattern is more complicated with the main attracting
state being gains of chromosomes 7, 19, and 20 together with
loss of chromosome 10, where simultaneous gains of chromo-
somes 7 and 19 together with loss of chromosome 10 are widely
known to be common in glioblastomas (59) and coamplification
of chromosomes 19 and 20 has been identified as a marker of
positive prognosis (60). This pattern at chromosomes 7, 10, 19,
and 20 is frequently complemented, particularly in glioblastomas,
by either loss or complex aneuploidy of chromosome 9, and then,
in the presence of this additional chromosomal change, we also
frequently see loss or complex aneuploidy of chromosome 6 in
glioblastoma. SI Appendix, Fig. S12 shows a more detailed set
of visualizations concentrating on these key interacting subsets
of chromosomes. SI Appendix, Fig. S13 shows that we obtain

qualitatively similar results under two alternative binary scoring
schemes.

Discussion
Probability distributions in molecular biology are often com-
plex and idiosyncratic because they inherit the complexity and
idiosyncrasy of the chemical, historical, and evolutionary pro-
cesses from whose confluence they arise. Likewise, the character
of these probability distributions is often discrete and combinato-
rial because the organization of biological information typically
takes this form, either in the guise of informational heteropoly-
mers (RNA, DNA, proteins) or because biological complexity
often arises from a collection of subunits where each subunit can
be in a certain number of states (a collection of neurons, each
of which is firing or not; a collection of chromosomes that each
appear with a certain number of copies). Here, we have pro-
posed a flexible method for estimating probability distributions
over these types of discrete combinatorial spaces that is capable
of capturing the detailed idiosyncrasy typical of these naturally
occurring distributions.

Many familiar probability distributions, such as the exponen-
tial and normal distributions, can be characterized as the highest-
entropy distributions compatible with some set of constraints
on the moments (e.g., the normal distribution is the maximum
entropy distribution given a fixed mean and variance). Recent
advances in Bayesian field theoretic density estimation (22–28)
have shown that it is possible to elaborate on such maximum
entropy estimates by defining a suitable prior over the space
of possible probability distributions. The theory we have devel-
oped here has a completely analogous structure but transferred
to a discrete multivariate setting (SI Appendix, Table S1). For
example, in the continuous case, the key quantity for determin-
ing the prior probability of a particular probability distribution is
the integral of the squared P th-order derivative of the log den-
sity, which is a measure of the average local roughness of the
probability distribution. Here, the corresponding quantity is, e.g.,
the average squared value of the conditional log odds ratio. This
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makes sense since the conditional log odds ratio is just the dis-
crete analog of a second-order mixed partial derivative of the log
density, in that it measures how changing the letter at one posi-
tion alters the effect on the log probability of changing a letter at
another position.

The work proposed here is also closely related to minimum
epistasis interpolation, a technique that we recently proposed for
regression, rather than density estimation, in biological sequence
space (31). The relationship between these techniques is that if
we view −φi as a phenotype, then the conditional log odds ratio
exactly corresponds to the classical notion of a double-mutant
epistatic coefficient. Minimum epistasis interpolation works to
estimate the relationship between genotype and phenotype by
taking a set of known phenotypic values and estimating the
remaining values by minimizing the value of the average squared
double-mutant epistatic coefficient (i.e., minimizing φT∆(2)φ
subject to an equality constraint at known genotypes). This can
produce a very complex reconstruction in regions of sequence
space where data are plentiful but relaxes toward a nonepistatic
(i.e., additive) reconstruction in regions of sequence space where
data are sparse or absent. In the regression case, the solution
to this problem is given by solving a system of linear equations,
unlike the nonlinear problem explored here. However, at an intu-
itive level, the SeqDEFT problem is very similar to minimum
epistasis interpolation in that sequences with a large number
of observations have essentially known log frequencies, whereas
sequences with zero or low counts have essentially unknown log
frequencies, and the prior works to ensure that the model dis-
plays relatively simple behavior in these poorly sampled regions
while matching the empirical log frequencies in well-sampled
regions.

Our results here also extend our previous results on minimum
epistasis interpolation. First, we gain an intuitive perspective
on the Bayesian generalization of minimum epistasis interpola-
tion by observing that its prior is equivalent to drawing epistatic
coefficients independently for each face of the Hamming graph
and then conditioning on mutual consistency [i.e., being a valid
solution to the bookkeeping problem (32)]. Second, we see
that the operators ∆(P) for P > 2 enable higher-order analogs
of the original minimum epistasis interpolation technique via
constrained minimization of φT∆(P)φ.

Our results are also related to the theory of spin glasses, in
that our prior can be viewed as a model of quenched disor-
der on a collection of ` spins that can each take α states as in
a Potts model (1) but with stochastic interactions of all orders
(61) rather than interactions being fixed at order 2 (or more
precisely, since our prior is improper, a limit of such models).
Despite this complex interpretation at the level of spin–spin
interactions, the interpretation is simple in terms of the distribu-
tion of energy landscapes over configuration space. Specifically,
for the proper component of our prior (consisting of those corre-
lations that cannot be captured by the corresponding maximum
entropy model), our method here is to use the unique fam-
ily of isotropic Gaussian distributions such that the energies of

configurations that differ at greater than P spins are condition-
ally independent. In particular, we show in SI Appendix that up
to a multiplicative factor ∆(P) is the unique precision matrix
with the properties that 1) its null space is identical to the space
of maximum entropy models based on the first P − 1 moments,
2) its entries depend only on the Hamming distance between
sequences, and 3) it takes the value zero (indicating conditional
independence) for all pairs of sequences with distance greater
than P .

Although SeqDEFT can capture complex probability distribu-
tions in the bulk of the data while exhibiting simpler behavior in
poorly sampled regions of sequence space, this flexibility comes
at a cost in terms of computational complexity. The main issue is
the nonquadratic nature of the posterior action, which results in a
numerical minimization problem that in practice we can only cur-
rently solve for sequence spaces with a few million genotypes or
less. This limitation corresponds to a maximum length of 11 for
DNA sequences or 5 for amino acid sequences, which prevents
the application of SeqDEFT at the whole-protein scale where
pairwise maximum entropy models have shown such impres-
sive performance (14, 19–21). While more work is needed to
develop nonparametric inference and exploratory data analysis
techniques applicable to these larger-sequence spaces, the tech-
niques developed here are still applicable to smaller genomic
elements such as transcription factor binding sites, 3′ splice sites,
transcriptional and translational initiation motifs, protein phos-
phorylation motifs, covariation at key catalytic positions, etc.
Much remains to be understood about sequence distributions
in spaces, such as these, that are small enough to allow com-
prehensive estimates of sequence frequencies but large enough
to allow distributions exhibiting rich and hitherto unexplored
geometries.

Materials and Methods
Our implementation of SeqDEFT is available at https://github.com/
davidmccandlish/SeqDEFT. Sparse matrices and their manipulations were
computed using the SciPy “sparse” package. MAP solutions were estimated
by minimizing the posterior action using the SciPy “optimize” package. The
optimal hyperparameter was determined by maximizing the k-fold cross-
validated log likelihood with k = 5. Probability distributions were visualized
using the dimensionality reduction technique in ref. 30. Details are given in
SI Appendix.

Data Availability. Previously published data were used for this work. The
dataset of annotated human 5′ splice sites was extracted from GEN-
CODE Release 34 (GRCh38.p13) available at https://www.gencodegenes.org/
human/. The dataset of karyotypic abnormalities in human cancer is from
ref. 29 and is available as part of the supplementary material at https://
doi.org/10.1016/j.ccell.2018.03.007.

ACKNOWLEDGMENTS. This work was supported by NIH Cancer Center
Support Grant 5P30CA045508, NIH Grants 5R35GM133777 (to J.B.K.) and
5R35GM133613 (to D.M.M.), a Cold Spring Harbor Laboratory/Northwell
Health Alliance grant (to J.B.K.), an Alfred P. Sloan research fellowship
(to D.M.M.), computational support from NIH Grant S10OD028632-01, and
additional funding from The Simons Center for Quantitative Biology at Cold
Spring Harbor Laboratory.

1. S. Cocco, C. Feinauer, M. Figliuzzi, R. Monasson, M. Weigt, Inverse statistical
physics of protein sequences: A key issues review. Rep. Prog. Phys. 81, 032601
(2018).

2. E. Schneidman, M. J. Berry II, R. Segev, W. Bialek, Weak pairwise correlations imply
strongly correlated network states in a neural population. Nature 440, 1007–1012
(2006).
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